Angelman syndrome & 15q Duplication syndrome

Ron Thibert DO, MsPH
Angelman Syndrome Clinic and Dup15q Center
Massachusetts General Hospital
Harvard Medical School
Ideogram of chromosome 15, showing genes located in the typical deletion region of Prader-Willi syndrome

Expert Reviews in Molecular Medicine © 2005 Cambridge University Press
Disorders of 15q

- **Angelman syndrome** – loss of function of UBE3A from the maternal 15q region

- **Prader Willi syndrome** – loss of function of UBE3A from the paternal 15q region

- **15q duplication syndrome**
 - Isodicentric chromosome 15 – 2 extra copies of the maternal 15q region on a 47\(^{th}\) marker chromosome
 - Interstitial duplications – 1 extra copy of the maternal 15q region contained within the maternal chromosome 15 (46 XX or XY)
Angelman Syndrome (Angleman.org)
Angelman Genetic subtypes

- Maternal deletions (68%)
- UBE3A Mutation (13%)
- Imprinting Center Defect (6%)
- Uniparental Disomy (3%)
- Unknown (~10%)
Clinical Manifestations of Angelman syndrome

- Clinical manifestations of Angelman syndrome are mainly Neurological/Psychological
 - Developmental delays (expressive speech most affected); very happy disposition
 - Epilepsy (~80-90%)
 - Movement disorders (tremor, ataxia, myoclonus) ~100%
 - Sleep disturbance (>50%)
 - Anxiety and difficult behaviors
 - GI dysfunction (>80%)
 - Orthopedic and ophthalmologic issues
 - Scoliosis, strabismus, etc.
Isodicentric 15q (idic15) idic15.org
idic15
Clinical manifestations of idic15

- Clinical manifestation of idic15 are mainly Neurological/Psychological
 - Developmental delays (global) – with significant hypotonia
 - High incidence of autistic spectrum disorders (~80%)
 - Behavioral issues – impulsivity, self-injurious behavior, anxiety, hyperactivity, agitation
 - Epilepsy common (~50-60%)
 - Sleep disturbance (>50%)
 - GI dysfunction (70-80%)
 - Orthopedic and ophthalmologic issues
 - Scoliosis, strabismus, etc.
Interstitial duplications (Urraca et al. 2013)
Clinical manifestations of Interstitial duplications

- Clinical manifestations similar to idic15 but milder
 - Subtle dysmorphic features
 - ASD of varying degrees is most common presentation
 - Often behavioral issues with anxiety most common issue; also can have emotional lability and hyperactivity
 - Seizures reported but not common
 - Sleep dysfunction can be present
 - GI dysfunction common – can be as severe as idic15
 - Paternal duplications can be symptomatic but rare and not associated with ASD (sleep, GI, anxiety)
MGH Angelman Syndrome Clinic and Dup15q Center

- Neurology/Epilepsy
- Psychiatry
- Neuropsychology
- Sleep medicine
- GI
- Consults to Genetics
- Consults to Ortho/Physiatry and Ophthalmology
- Consults for PT, OT, speech, Aug. Comm.
Epilepsy in Angelman syndrome
Seizures in Angelman syndrome

- Epilepsy in Angelman syndrome is a generalized epilepsy
 - Generalized tonic-clonic
 - Atypical absence
 - Atonic
 - Myoclonic
 - Focal seizures present in ~30%
 - Tonic seizures and spasms rare if present at all
ASF Seizure Survey

- Seizure survey performed in 2006-07
 - On-line questionnaire through ASF

- 461 responses
 - 391 (86%) had seizures
 - 60% had multiple seizure types
 - ~30% reported focal seizures (typically along with generalized seizure types)

- Thibert et al., *Epilepsia* 2009
AS Seizure types

Seizure Types

- GTC
- Atonic
- Absence
- Focal
- Myoclonic
- Tonic
- Spasms
AS Seizures by subtype

Genetic Subtypes

- Deletion
- UPD
- UBE3A
- Imprinting
Seizures in AS - Age

Seizures in AS relative to age:

- Average onset approximately 2-3 yrs of age, typically beginning in childhood (rarely under 1 year of age)
- Seizures are usually most frequent and most intense in early childhood and tend to improve by puberty
- Seizures can then return and persist into adulthood but are typically much less frequent and less intense – a recent study of 110 adults with AS showed ~1/3 had seizures recur in adulthood but these were typically more mild and less frequent (Larson et al. 2015)
NCSE

- Non-convulsive status epilepticus (NCSE)
 - Occurs in >50% of those with AS; some studies report ~90% but in our clinic only ~20%
 - Episodes of decreased alertness lasting days to weeks often with loss of skills
 - Typical seizures usually lessen during NCSE
 - AS not progressive so always consider NCSE first if any regression
 - Frequent myoclonic jerks in this setting could be myoclonic status in non-progressive encephalopathies (MSNE) – rare but AS most common etiology
NCSE EEG
EEG in AS

- About 90-95% have abnormal EEG patterns with or without clinical seizures
- Normal EEG’s rare but have been reported in some with imprinting center defects
- 3 common patterns
 - Bi-frontal predominant slow spike and wave with a “triphasic” appearance
 - Rhythmic 4-6 Hz centrotemporal activity
 - Posterior “notched” delta activity
Frontal notched delta
Notched delta
Seizure treatment in AS

- Controlled with 1st AED: 77%
- Controlled with 2nd AED: 15%
- Refractory to at least 2 medications: 8%
Seizure treatment in AS

- Valproic acid
- Clonazepam
- Phenobarbital
- Topiramate
- Carbamazepine
- Lamotrigine
- Levetiracetam
- Phenytoin
- Zonisamide
- Ethosuxamide
- Gabapentin
- Felbamate
- Oxcarbazepine
- Tranxene
- Clobazam
- ACTH
- Nitrazepam
- Other
Seizure Medications (Shaaya et al 2016)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No change</th>
<th><50% improved</th>
<th>50-90% improved</th>
<th>>90% improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valproic acid</td>
<td>0</td>
<td>0</td>
<td>8 (38.1%)</td>
<td>13 (61.9%)</td>
</tr>
<tr>
<td>Levetiracetam</td>
<td>0</td>
<td>0</td>
<td>5 (14.3%)</td>
<td>30 (85.7%)</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>0</td>
<td>0</td>
<td>2 (11.8%)</td>
<td>15 (88.2%)</td>
</tr>
<tr>
<td>Clobazam</td>
<td>2 (7.1%)</td>
<td>0</td>
<td>2 (7.1%)</td>
<td>24 (85.7%)</td>
</tr>
<tr>
<td>LGIT</td>
<td>0</td>
<td>1 (10%)</td>
<td>2 (20%)</td>
<td>7 (70%)</td>
</tr>
</tbody>
</table>
Seizure Medications

(Shaaya et al 2016)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Average Dose (mg/kg/day)</th>
<th>Average course (months)</th>
<th>Adverse Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valproic acid</td>
<td>26.6 (8-60)</td>
<td>56</td>
<td>66.6%</td>
</tr>
<tr>
<td>Levetiracetam</td>
<td>60.4 (6-200)</td>
<td>36</td>
<td>20%</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>6.6 (2.5-12)</td>
<td>58</td>
<td>23.5%</td>
</tr>
<tr>
<td>Clobazam</td>
<td>1.0 (0.2-2.1)</td>
<td>13</td>
<td>32%</td>
</tr>
</tbody>
</table>
Seizure Medications

- Similar to the Seizure Survey of 2009, newer medications such as Levetiracetam (Keppra) and Lamotrigine (Lamictal) have similar efficacy to Valproic acid – in our clinic population the efficacy is a bit higher.

- Clobazam was not widely used in the 2009 study so sufficient data was not available. In our clinic, efficacy is similar to that of Levetiracetam and Lamotrigine.

- Also similar to the 2009 study, valproic acid had much higher rates of side effects, mainly tremor and decreased motor skills/ambulation.
Treatment of NCSE

- In progress case series at MGH

21 children with NCSE (26 total events) – all 21 treated with oral diazepam (Valium) as outpatients
 - Median duration of therapy – 6 days
 - Typical starting dose ~0.3 mg/kg/day divided into TID or BID
 - 5/26 needed 2 courses with 1/26 needing 3 courses
 - 22/26 (85%) treated successfully with Valium
 - 3/4 non-responsive episodes responded to prednisone; 1 was placed in burst suppression.
Low Glycemic Index Treatment

- Based on the “glycemic index” foods (raises blood glucose)
- Allows for 40-60 gm carbohydrates per day
 - 10% carbs; 20-30% protein; 60-70% fat
- No need for admission; monitoring less strict than ketogenic but still needed
- Meals based on percentages above and caloric needs
- Compliance better than ketogenic as less restrictive
- Efficacy not quite as good as ketogenic so can convert for better control
 - 1/3 not effective or not tolerated
 - 1/3 50-90% reduction in seizures
 - 1/3 >90% reduction in seizures or seizure free
 - Can take 2 weeks to 2-3 months to see effects
LGIT trial in AS

- LGIT prospective trial – 6 children with AS

 - After 4 months:
 - 4 children >90% seizure-free
 - 1 child 50-90% seizure-free
 - 1 child <50% seizure free

 - After 1 year (5 still on LGIT)
 - All 5 children >90% seizure-free
 - All 5 remain on LGIT 7-9 years later
 - Thibert et al., *Epilepsia* 2012
LGIT in AS (MGH – Grocott et al 2017 Ep and Behav)

- Overall – 23+ children/adults have been on the LGIT
 - Daily seizures (5) – all improved with 1 seizure-free except illness
 - Weekly seizures (3) – all improved with 1 seizure-free except illness
 - Monthly seizures (2) – both seizure-free, 1 except for illness
 - Seizures only when ill (3) – 2 were similar and 1 seizure-free
 - Only NCSE (1) – still had NCSE
 - Well controlled (1) – stayed well controlled and cut medications

- Overall themes
 - LGIT very effective in Angelman syndrome
 - Seizure control often achieved with >60 g per carbohydrates
 - Illness and NCSE are the 2 situations where diet is less effective
Non-epileptic Myoclonus

- **Myoclonic seizures**
 - Common in Angelman syndrome (~15-40%) and are often the first seizure type reported; onset in early childhood
 - Events are usually brief in duration – typically seconds but can last up to a minute
 - Children with myoclonic seizures typically have generalized spike and wave activity on interictal EEG and seizures captured on EEG are associated with spike and wave activity
- **MGH clinic:**
 - 17/185 (15%) had myoclonic seizures
 - Age of onset ~1-8 years (78% had onset before 5 years)
Non-epileptic Myoclonus

- Non-epileptic myoclonus
 - Age of onset is at puberty or later
 - Events last seconds to hours and can occur multiple times per day
 - There is no significant alteration of consciousness during the events and no post-ictal period
 - There is no associated regression or loss of skills
 - Events captured on EEG show no EEG changes
 - 12 individuals had prolonged EEG capturing events
 - 5 has inpatient video (3 MGH); 7 ambulatory (2 MGH)
 - All captured events and none had EEG correlate
Prevalence of NEM by age

Figure 1: Percent of patients in cohort with NEM by age group (n=185)
Epilepsy in 15q Duplication syndrome
Epilepsy in Dup15q

- Epilepsy appears to be multifocal
 - MRI’s show focal abnormalities
 - Pathology shows regions of focal abnormalities

- Some children have focal or multifocal seizures which typically respond well to medication

- Some children have secondarily generalized seizures which are typically much harder to treat, at times resulting in a Lennox-Gastaut type of epilepsy including epileptic spasms
MRI Findings

- 11 MRI’s – idic(15) – 9 and int dup(15) – 2
 - 8/11 children had hippocampal malformation with incomplete hippocampal inversion that was bilateral in 7 and right in 1
 - 2/11 children had unilateral mesial temporal sclerosis (both idic(15) with refractory seizures)
 - Hypoplasia of the corpus callosum, which is the most previous reported finding, was present in two children

- Boronat et al. 2015
MRI
Dup15q Seizure Survey

- Seizure survey performed in 2010 through the Dup15q Alliance
 - Same survey as used by the ASF
- 95 responses
- 83/95 with idic15
 - 63% have seizures
 - 50% have multiple seizure types
 - 26% have infantile spasms

- Conant et al., Epilepsia 2013
idic15 seizure types
idic15 – spasms
Treatment - Spasms

- ACTH
- Vigabatrin

Comparison chart showing the effectiveness of ACTH and Vigabatrin in treating spasms, with ACTH significantly more effective than Vigabatrin in reducing spasms by over 90%.
Response to 1st Medication

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100%</td>
<td>24%</td>
</tr>
<tr>
<td>50-90%</td>
<td>21%</td>
</tr>
<tr>
<td><50%</td>
<td>12%</td>
</tr>
<tr>
<td>No change</td>
<td>31%</td>
</tr>
<tr>
<td>Worse</td>
<td>12%</td>
</tr>
</tbody>
</table>
Treatments – non-spasms
Idic15 EEG (in progress)

- Nearly all EEG’s had a common finding
 - Excessive beta activity throughout

- A subset of children had very characteristic EEG patterns in sleep
 - Bursts of high-voltage, high-amplitude polyspikes
 - Alpha-delta sleep
 - Sleep activated discharges (ESES-type pattern)
Excessive beta activity
High voltage/high frequency spikes
Alpha-delta sleep
Int Dup15 Seizures

- Dup15q seizure survey
 - 3 reported seizures (1 had a single focal seizure)
 - 2 had epilepsy (16%)

- MGH Dup15q Center
 - 2/11 children with epilepsy (18%)
 - Both with focal seizures on monotherapy

- Urraca et al. 2013
 - 1/13 had focal epileptiform discharges and likely focal seizures (8%)
Sleep in AS

- Sleep problems are described in the AS diagnostic criteria as ‘abnormal sleep-wake cycles and diminished need for sleep’ - listed as 20-80% prevalence (Williams et al, 2005)

- Sleep problems in AS are likely multifactorial and may be related to abnormal GABA transmission

- Other factors that may play a role in sleep dysfunction
 - Epilepsy
 - Medications, especially seizure medications
 - GI symptoms – specifically constipation and reflux
 - Anxiety
Sleep in AS

- 58% report difficulties with sleep – difficulty falling asleep most common
 - Expressive sleep disorders
 - Sensitivity to the environment
 - Disoriented awakening
 - Apnea

- Significant correlation between sleep disturbance and epilepsy (P=0.005) and with multiple seizure types (P<0.005)
 - Conant et al.; Epilepsia, 2009
Sleep in AS

<table>
<thead>
<tr>
<th>Medications</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>80%</td>
</tr>
<tr>
<td>Trazadone</td>
<td>40%</td>
</tr>
<tr>
<td>Amitryptiline</td>
<td>20%</td>
</tr>
<tr>
<td>Melatonin</td>
<td>20%</td>
</tr>
<tr>
<td>Choral hydrate</td>
<td>10%</td>
</tr>
<tr>
<td>Benadryl</td>
<td>10%</td>
</tr>
<tr>
<td>Clonidine</td>
<td>10%</td>
</tr>
<tr>
<td>Nitrazepam</td>
<td>10%</td>
</tr>
<tr>
<td>Nitrazepam</td>
<td>10%</td>
</tr>
<tr>
<td>Magnesium</td>
<td>10%</td>
</tr>
<tr>
<td>Gabapentin</td>
<td>10%</td>
</tr>
<tr>
<td>Ambien</td>
<td>10%</td>
</tr>
</tbody>
</table>
Sleep Medications

- Limited studies have assessed sleep medications in AS – this is an area that needs more exploration.

- Melatonin is typically first line medication and 2 small studies showed it to decrease sleep latency, decrease nighttime wakings, and lengthen overall sleep.

- Other medications that have been useful anecdotally:
 - Trazodone
 - Benzodiazepines such as clonazepam and clobazam
 - Gabapentin (Neurontin)
 - Clonidine
 - Hydroxyzine
Dup15q Sleep

Full Dup15q Cohort (67)
- No Sleep Issues (25)
 - Sleep Issues Mild/Untreated (6)
 - Uses Sleep Medication (18)
 - Melatonin Monotherapy Helpful (11)
 - Melatonin Partially Helpful (2)
 - Other Sleep Medications Trialed (5)
 - Does Not Sleep Well (36)
 - Dysfunction Caused by Other Issues (18)
 - Sleep Apnea (3)
 - Seizures (11)
- Has Sleep Issues (42)
Dup15q Sleep

- Types of Sleep Dysfunction (in MGH cohort)
 - 30-40% don’t have any form of sleep dysfunction
 - Trouble Falling Asleep
 - 13% idic(15)
 - 31% int dup(15)
 - Nighttime waking
 - 41% idic(15)
 - 54% int dup(15)
 - Early Waking
 - 9% idic(15)
 - 0% int dup(15)
GI Dysfunction
Etiology of GI issues

- GI issues in Angelman Syndrome and Dup15q are both likely multifactorial
 - Decreased gut motility due to abnormal neuronal input
 - Picky eaters with decreased intake in vegetables and fiber – often a sensory issue
 - Decreased fluid intake
 - Medications – some medications such as benzodiazepines can be constipating
Medical issues related to GI

- GI dysfunction often causes or exacerbates other issues in AS
 - GI pain and reflux can significantly worsen sleep as reflux is more severe when lying down
 - GI pain can cause or exacerbate aggressive behaviors and anxiety
 - Severe reflux can lead to medical issues such as aspiration pneumonia
 - Significant GI dysfunction can exacerbate seizures due to overall stress placed on the body in addition to the pain and anxiety
GI in Angelman (Glassman et al 2017)

<table>
<thead>
<tr>
<th>GI Dysfunction</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of any GI symptoms</td>
<td>141/163 (86.5%)</td>
</tr>
<tr>
<td>Constipation</td>
<td>116/163 (72%)</td>
</tr>
<tr>
<td>Gastroesophageal reflux</td>
<td>72/163 (44%)</td>
</tr>
<tr>
<td>Cyclic vomiting – type spells</td>
<td>16/163 (9.8%)</td>
</tr>
<tr>
<td>Eosinophilic Esophagitis</td>
<td>7/120 had endoscopy – 4/120 (3.3%) had EE</td>
</tr>
<tr>
<td>Swallowing difficulties</td>
<td>9/163 (5.5%) – trouble swallowing 10/120 (8.3 %) swallow study</td>
</tr>
</tbody>
</table>
GI issues by genetic subtype

- Constipation and reflux rates did not differ significantly amongst genetic subtypes
- Poor feeding as an infant was much more common in those with deletions and only those with deletions required g-tubes
- Only those with deletions or UPD reported:
 - Difficulty swallowing
 - Excessive swallowing
 - Swallow studies performed
 - Eosinophilic Esophagitis
Gl in Dup15q

- Prevalence of Gl symptoms – 30/38 (79%)
 - Idic15 – 23/30 (76%)
 - Int Dup15 – 7/8 (87.5%)
- Prevalence of Constipation – 18/38 (47%)
- Prevalence of Gl Reflux – 17/38 (45%)

Shaaya et al. 2015
Movement disorder in Angelman syndrome
Movement Disorders

- Classic AS Phenotype
 - Ataxic gait
 - Mild tremor
 - Spasticity of distal lower limbs
- Ataxia affects up to 88% of children
- Tremor can progress with age
- Hypotonia common in infancy (~51%); 22% have persistent hypotonia and 33% develop hypertonia
 - Hypotonia not nearly as severe as in Dup15q
Non-epileptic Myoclonus

- **Myoclonic seizures**
 - Common in Angelman syndrome (~15-40%) and are often the first seizure type reported; onset in early childhood
 - Events are usually brief in duration – typically seconds but can last up to a minute
 - Children with myoclonic seizures typically have generalized spike and wave activity on interictal EEG and seizures captured on EEG are associated with spike and wave activity

- MGH clinic:
 - 17/185 (15%) had myoclonic seizures
 - Age of onset ~1-8 years (78% had onset before 5 years)
Non-epileptic Myoclonus

- **Non-epileptic myoclonus**
 - Age of onset is at puberty or later
 - Events last seconds to hours and can occur multiple times per day
 - There is no significant alteration of consciousness during the events and no post-ictal period
 - There is no associated regression or loss of skills
 - Events captured on EEG show no EEG changes
 - 12 individuals had prolonged EEG capturing events
 - 5 has inpatient video (3 MGH); 7 ambulatory (2 MGH)
 - All captured events and none had EEG correlate
Prevalence of NEM by age

Figure 1: Percent of patients in cohort with NEM by age group (n=185)
Autism and Anxiety
Autism Spectrum Disorders

- Autism spectrum disorders (ASD)
 - ASD are common in children with 15q duplications (~80%) and range from mild to severe
 - ASD in Dup15q is somewhat atypical and these children tend to show more desire to socialize than children with idiopathic autism
 - ASD is rare in Angelman syndrome but some children do meet criteria – most with larger deletions
 - Children with Angelman syndrome are very social and make excellent eye contact – often hypersocial
 - Further studies are needed to assess this in more detail for both syndromes
Anxiety

- Anxiety is very common in Angelman syndrome and can be severe, presenting a significant quality of life issue; it appears to worsen with age.

- Anxiety in AS can have an atypical presentation:
 - Excessive swallowing
 - Refusal to walk or leave the house
 - Excessive clinging to caregivers (can be aggressive)

- Anxiety also appears to be very common in children with 15q Duplications and can present more with agitation or aggression.

- Anxiety in both syndromes is a significant area of need in terms of further studies and better understanding.
References

References

